When Girls Design CPUs!

An overview on one of the world’s most famous CPU cores: ARM
Once Upon a Time…

• There was a company in UK
 • Acorn
• This company was the competitor to
 • IBM
 • Apple
• They were creating personal computers and selling them
• BBC company signed a contract with Acorn
 • To create a computer for BBC
BBC Micro

- Used a processor
 - MOS Technology 6502
- BBC advertised for BBC Micro widely
- All of the schools in UK used BBC Micro for education
- Also some universities
- And research laboratories
- Acorn was thinking about the next product
 - They needed a better CPU
 - CPU should be owned by themselves
Acorn’s own CPU!

- Acorn decided to have its own CPU
- But how?
 - It required a great background
 - Acorn has nothing as the background to perform this task
- At same time at Berkley
 - A team of graduate students
 - Designed a new purely RISC cpu
 - They published some papers
 - CPU was competitive to CPUs on the market that time
- Acorn found the papers!
- It was a great starting point!
The journey to the west!

- Acorn decided to send some of its engineers to learn required info about creating CPUs
- Selected engineers
 - Sophie Wilson
 - Steve Furber
- They travelled to Western Design Center
- They learned
 - Creating a new CPU is not that much difficult!
Designing the CPU

• Sophie Wilson
 • Began to develop the *instruction set* for the new CPU
 • She also developed the basic new CPU structure
• She talked to Acorn CEO
 • Convinced them the new design is good
• A team of engineers
 • Helped Wilson to create CPU circuits
• VLSI technology was selected to build the CPU
The CPU by Wilson

• The new CPU
 • Had a very simple architecture
• No cache memory!
• No DMA controller!
• No Memory protection mechanism!
• No multiple register banks!
• No delayed branches!
• No Single cycle execution of all instructions!
• ...
• Nothing!!!!
Acorn’s first CPU

• Designers omitted every risky part of CPU
• Just kept simplest sections
• Result: a very simple CPU
 • And so: its power consumption was very small
 • And this was the revolution!
Acorn RISC Machines

• Acorn had now a better name
 • Acorn RISC Machines
• April 1985
 • Acorn RISC Machine introduced their first CPU
 • ARM1
• Using ARM1 machine Wilson developed “BBC Basic”
 • BBC Basic was developed for ARM1
 • Used to create CAD software required for development of ARM2
• 1986
 • ARM2 was in the market!
ARM2 Processor

- 32Bits data bus
- 26Bits address space
- 16 Registers 32Bits
- ARM2 was simplest 32Bits processor of the world
- Transistor count: 30,000
- Intel 80286 transistor count was: 134,000
- ARM2’s performance was better than 80286
- ARM2’s power consumption was much lower
- Transistor count growth for arm
 - Very slow
 - ARM6 was 35,000 transistors
In 1990, Apple, Acorn and VLSI Technologies joined forces to further enhance the ARM architecture. A new company was created, a spin-off from Acorn that became Advanced RISC Machines. This company then began its existence.
ARM6

- 1992
 - ARM6: The result of effort by ARM and Apple
 - ARM610 CPU used by Apple in PDAs
- DEC company licensed ARM6 core
 - It enhanced ARM6 architecture and created StrongARM
- StrongARM was then given to Intel
 - Intel implemented a high performance implementation of StrongARM
 - Intel called it: Xscale
 - Intel sold Xscale to Marvell
What is a core?

- A core is a ready to use design
 - Hardware
 - A piece of ready to use silicon (transistors and wires)
 - A circuit consisting gates and their connections
 - Should be converted into Silicon
 - Software
 - Source code of the core in a hardware description language
- You purchase the core
 - You put the ready-to-use core into your design directly
ARM Cores

• ARM company
 • Does not sell chips
 • Sells CPU cores
• ARM licenses CPU cores to other companies
• They use the core to build their own chip
 • Microprocessor
 • Microcontroller
• They add their own peripherals to the chip
• They sell their chips
 • One part of obtained money : will go back to ARM company
ARM Financial Status

• In 2005
 • ARM sold 1.6 billion cores
• In 2006
 • 2.45 billion cores were sold
 • Income:
 • Royalties: $164.1 million
 • Licensing revenues: $119.5 million (65 Licenses signed)
• In 2011
 • Predication: ARM will sell 5 billion ARM cores
• In 2007
 • 98% of mobiles phones contained some sort of ARM core
• In 2009
 • 90% of 32Bits embedded systems were based on ARM
ARM core Families & Architectures

<table>
<thead>
<tr>
<th>Family</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM1</td>
<td>ARMv1</td>
</tr>
<tr>
<td>ARM2</td>
<td>ARMv2, ARMv2a</td>
</tr>
<tr>
<td>ARM3</td>
<td>ARMv2a + cache</td>
</tr>
<tr>
<td>ARM6</td>
<td>ARMv3 + coprocessor bus + 32bit memory space</td>
</tr>
<tr>
<td>ARM7</td>
<td>ARMv3</td>
</tr>
<tr>
<td>ARM7T</td>
<td>ARMv4T (Thumb instruction set)</td>
</tr>
<tr>
<td>ARM7J</td>
<td>ARMv5J (Java support)</td>
</tr>
<tr>
<td>ARM8</td>
<td>ARMv4 (branch prediction, better memory controller)</td>
</tr>
<tr>
<td>ARM9</td>
<td>ARMv4</td>
</tr>
<tr>
<td>ARM9E</td>
<td>ARMv5 (Enhanced DSP)</td>
</tr>
<tr>
<td>ARM10</td>
<td>ARMv5 (higher speed- deeper pipeline)</td>
</tr>
<tr>
<td>ARM11</td>
<td>ARMv6 (higher speed, floating point, DSP, ...)</td>
</tr>
<tr>
<td>ARM-CORTEX</td>
<td>ARMv7-A, ARMv7-R, ARMv7-M</td>
</tr>
</tbody>
</table>