TMS320C3X Foating
Point DSP

Microcontrollers & Microprocessors Undergraduate Course
Isfahan University of Technology — Oct 2010
By : Mohammad Sadegh Sadri

© -
c ©
© (5]
% (%]
S & W
(%]

17,) ()
(] ©
(&) ©
(@] n
o

o

(@]

i

.0

©
©
S
S
©
<
o
=
1
(%]
—
i)
©
—
L
c
o
O
o
-
2
=

—
=
|

DSP

* DSP : Digital Signal Processor
* Why A DSP?
Example
Voice Recorder

 DSP
Low cost

=
©
(9%
(%)
£=
[o14]
()
©
(9%
(%}

High Performance

©
=
©
n
—
(]
n
n
(O]
O
o
L.
Q.
o
-
.0

©
©
S
S
©
B
]
=
1
(%]
—
o
©
—
+—
=
o]
O
o
o
)
=

Dedicated to processing applications
Simple Architecture

Real Time Systems

—
N
—

DSP Manufacturers

Texas Instruments

Analog Devices

Motorola
Now : Freescale

© -
c ©
© (5]
% (%]
S & W
(%]

17,) ()
(] ©
(&) ©
(@] n
o

o

(@]

i

.0

©
©
S
S
©
<
o
=
1
(%]
—
i)
©
—
L
c
o
O
o
-
2
=

—
(O8]
—

Digital Signal Processing in GP
CPUs

* By the time passed

More DSP functionality added to General Purpose CPUs
* Today CPUs

Contain huge hardware

For signal processing calculations

=
©
(9%
(%)
£=
[o14]
()
©
(9%
(%}

* Example
Streaming SIMD Extension

©
=
©
n
—
(]
n
n
(O]
O
o
L.
Q.
o
-

.0

©
©
S
S
©
B
]
=
1
(%]
—
o
©
—
+—
=
o]
O
o
o
)
=

—
S
-

Two Major DSP Categories

* Floating Point * Fixed Point DSP

Higher Silicon Area is
required for
implementation of
Floating Point Unit

Higher Prices

Lower Clock
Frequencies

Lower Level of
parallelism

Easy Algorithm Design

Very difficult algorithm
design
* Designer should take
care of losing data

Smaller silicon Area
Higher clock frequency
Smaller price

Higher Level of parallelism

Totally : higher level of
performance

o -
c Ee]
© (5]
% (%]
S & W
(%]

17,) ()
(] o
(&) ©
(@] n
o
o
(@]
i
.0

©
©
S
S
©
{5
(@]
p=
1
(%]
o
9
©
o
s
=
(@]
(8}
(@]
o
=
p=

—
(92)
—

Texas Instruments

TMS320C10/C25
TMS320C30/31/32/40
Floating Point
TMS320C5x
Fixed Point Ultra Low Power

TMS320C6x : MIMD architecture
TMS320C67x : Floating Point
TMS320C62x/64x : Fixed Point

Very high levels of performance

Mohammad
Sadegh Sadri

©
=
©
n
—
(]
n
n
(O]
O
o
L.
Q.
o
-

.0

Microcontrollers -

—
(@)]
—

TMS320C3x DSPs

1988
Harvard Architecture

Floating point computations
Addressing Range: 24 Bits (16Mbytes)
3 Families

TMS320C30

TMS320C31
TMS320C32

C30 : contained a boot ROM
C31/C32 : contained Boot Loader instead

Mohammad
Sadegh Sadri

©
=
©
n
—
(]
n
n
(O]
O
o
L.
Q.
o
-
.0

°
Microcontrollers -

—
~
—

Boot Loader

What is a boot loader?
An application
Which is the first application executed by CPU

Responsible for Loading the main application into system
memory and starting it

Boot Loader is usually small

=
©
(9%
(%)
£=
[o14]
()
©
(9%
(%}

Boot Loader contains the first instructions that are executed
by CPU

Boot loader design is tricky

©
=
©
n
—
(]
n
n
(O]
O
o
L.
Q.
o
-

.0

©
©
S
S
©
{5
(@]
p=
1
(%]
o
9
©
o
s
=
(@]
(8}
(@]
o
=
p=

Boot loader is usually stored on a kind of flash memory

—
oo
—

TMS320C30 Family

Memory (words)

Cycle On-Chip Off-Chip Peripherals
Device Freq Time DMA
Name {(MHz) {ns) RAM ROM Cache Parallel Serial Channels Timers
27 75 2K 4K 64 16M x 32 2 1 2
8K x 32
285
33 B0 2K 4K 64 16M % 32 2 1 2 © £ 3
'C30 8K x 32 s Eg
Q< o
‘=N
(5V) 40 50 2K 4K 64 16M x 32 2 1 2 <
8K x 32 o 2
L5
50 40 2K 4K 64 16M % 32 2 1 2 €
8K x 32 S
2

(o)

TMS320C32 Internal Block
Diagram

* SPRUO31e
Page 43

* Description of Buses

Program buses
PADDR, PDATA

Data buses

=
©
(9%
(%)
£=
[o14]
()
©
(9%
(%}

2 Data memory accesses every machine cycle

DDATA, DADDR1, DADDR2, CPU1, CPU2

REG1, REG2 : no connected to memory. (Internal Bus)
DMA buses

DMAADDR, DMADATA

©
=
©
n
—
(]
n
n
(O]
O
o
L.
Q.
o
-

.0

©
©
S
S
©
B
]
=
1
(%]
—
o
©
—
+—
=
o]
O
o
o
)
=

—
=
o

|

Registers

* RO~ R7
8 Extended Precision Registers (40Bits)
* Exponent and Mantissa : 2’s complement

Extended-Precision Register Floating-Point Format
39 32 31 30 0

Extended-Precision Register Integer Format
39 32 31 0

© -
c ©
© ©
% (%]
g & W
(%]

17,) ()]
(] ©
(&) ©
(@] (%s]
s

o

o

st

2

©
©
(S
(S
©
=
)
=
1
(%]
s
9
©
=
+—
[
(@]
(8}
o
o
=
P

Unchanged Signed or unsigned integer

 \
[
[EEN

—

Extended Precision Range

Most positive: x=(2-2"23yx 2127 = 3.4028234 x 103%
Least positive: x=1x2-127 =58774717 x 10-3°

Least negative: x=(-1-2-23)x 2-127 = _5 8774724 x 1039
Most negative: =-2x2127 = _3.4028236 x 1033

© -
c ©
© ©
&) U)
Q=W
n

(7] (]
(] ©
1 ©
(@] (%s]
L .

o

o

-

2

©
©
1S
1S
©
E=
)
p=
1
(%]
s
9
©
=
+—
[
(@]
(8}
o
o
=
p=

 \
=
N

—

Auxiliary Registers

* 8 Registers ARO~AR7

32Bits

Mainly used for Address Generation

Can be used as 32Bits General Purpose Registers
* Index Registers IRO and IR1

Used for addressing

Mohammad
Sadegh Sadri

* Two Address Generators:

©
=
©
n
—
(]
n
n
(O]
O
o
L.
Q.
o
-

.0

Auxiliary Register Arithmetic Unit

Microcontrollers -

—
=
w

|

Rest of Registers

* DP : Data page pointer (similar to segment register)
* BK : Block size (Described Later)

* SP : System stack pointer

* ST : Status register

* |E : CPU/DMA interrupt enable register

* |F : CPU interrupt flag register

* |OF : 1/0 Flags register (control XFO and XF1)

Mohammad
Sadegh Sadri

©
=
©
n
—
(]
n
n
(O]
O
o
L.
Q.
o
-

.0

Microcontrollers -

—
=
B

|

[F Bits

Table 3—-4. IF Bits and Functions

Bit Reset

Name Value Function

INTO 0 External interupt 0flag

INT1 0 External interrupt 1 flag

INT2 0 External interrupt 2 flag

INT3 0 External interrupt 3 flag - e

KINTO 0 Serial port 0 transmit flag § g E

RINTO 0 Serial port 0 receive flag % %U %D
. . 828

KINT 1 0 Serial port 1 transmit flag ('C30 only) 5 .

RINT1 Serial port 1 receive intemrupt flag (C30 only) § %

TINTO Timer 0 interrupt flag §

TINT1 Timer 1 interrupt flag §

DMAD channel interrupt flag ('C32 only)
DMA1 channel interrupt flag (C32 only)

 \
=
(92}

—

0
0
0
DINT 0 DMA channel interrupt flag ('C30 and 'C31 only)
0
0
0

Interrupt-trap table pointer (see Section 3.1.9.1)
Allows the relocation of interrupt and trap vector tables ('C32 only)

Zero-Delay Loops

* Loops: extensively used in applications

* Great amount of time is usually consumed on “Checking the
Loop Condition” in each iteration

* Hardware can handle simple loops
No over head for checking the loop condition

Mohammad
Sadegh Sadri

©
=
©
n
—
(]
n
n
(O]
O
o
L.
Q.
o
-

.0

Microcontrollers -

—
[y
(@)

—

Zero-Delay Loop Registers

* Repeat-Counter RC
RC=n
Causes n+1 iterations

* RS : Repeat Start Address

* RE : Repeat End Address

=
©
©
(%]
45
[o14]
()
©
©
(%]

LDI 15,RC
RPTEB ENDLOOP

STLOOP

©
=
©
n
—
o
n
73
(]
O
o
L .
Q.
o
-

2

ke
©
S
S
©
=
@]
=
1
(%]
—
A
©
—
+—
[
]
O
(@]
=
o=
=

 \
=
~

—

ENDLOOP

Memory Map

Page 92
Microcomputer/Boot Loader Mode

Page 97
Peripheral related Memory Mapped Registers

© -
c ©
© (5]
% (%]
S & W
(%]

17,) ()
(] ©
(&) ©
(@] n
o

o

(@]

i

.0

©
©
S
S
©
B
]
=
1
(%]
—
o
©
—
4+
=
o]
O
o
o
)
=

—
=
(0]

|

Addressing Modes

* Register Addressing
Register contains the operand

ARSF R1 ; Rl = |R1]|

* Direct Addressing

=
©
©
(%]
45
[o14]
()
©
©
(%]

Instruction contains address of operand directly

ADDI @ORBCDEh, R7

©
=
©
n
—
o
n
73
(]
O
o
L .
Q.
o
-

2

©
©
1S
1S
©
E=
)
p=
1
(%]
s
A
©
=
+—
[
(@]
(8}
o
o
=
p=

* Indirect Addressing
Auxiliary register contains the address to operand

LDI *ARO, RO

 \
=
(o)

—

Indirect Addressing

MPYF *ARZ2++,R1

MPYF *++ARO(IR1),RO

LDF *~-AR3(2),R1

=
©
©
(%]
45
[o14]
()
©
©
(%]

©
©
1S
1S
©
=
o
p=
1
%
—
1)
©
—
+—
[

Microco

—
N
o

—

Indirect Addressing (2)

Syntax Operation
*+ARN0isp) addr= ARn + disp
*— AR N disp) addr = ARn - disp

*++ARNdisp) addr = ARn + disp
ARn =ARn + disp

——ARN(disp) addr= ARn - disp
AR =ARnN - disp

TAR++(disp) addr=ARn
ARn=ARn + disp

TARNM——(disp) addr= ARn
AR =ARnN - disp

© -
= ©
© ©
% (%]
g & W
(%]

17,) ()]
(] ©
(&) ©
(@] (%s]
s

o

o

ut

2

©
©
1S
1S
©
E=
)
p=
1
(%]
s
9
©
=
+—
[
(@]
(8}
o
o
=
p=

Circular Addressing

*ARm++{disp)% addr=ARn <€
ARn = circ{ARn + disp)

ARN——(disp)% addr=ARn
AR = circ{AR n — disp)

 \
N
=

—

Indirect Addressing (3)

Syntax Operation

+ARN(IRO) addr=ARn+ IRO
—ARNIRO) addr= ARn- IRO
*++ARN(IRO) addr= ARn+ IRO

ARnN=ARnN+IRO

*——ARN(IRO) addr=ARn- IR0
ARnN=ARnN - IR0

*ARn++{IR0O) addr = ARn
ARnN=ARn + IR0

*ARnM——(IRO) addr=ARn
ARnN=ARn - IR0

*ARM+(IR0)% addr=ARn
ARn =circlARn + IR0O)

"ARN——(IR0)% addr=ARn
ARn = circ{ARn— IR0)

© -
= ©
© ©
% (%]
g & W
(%]

17,) ()]
(] ©
(&) ©
(@] (%s]
s

o

o

ut

2

ke
©
S
S
©
=
@]
=
1
(%]
—
A
©
—
+—
[
]
O
(@]
=
o=
=

—
N
N

—

Indirect Addressing (4)

* Bit reversed addressing

Syntax Operation
"ARnN addr=ARn
"ARN++(IRO)B addr= ARn

AR =B(ARn + IRO)

ge
©
S
S
©
<
o
p=

=
©
©
(%]
45
[o14]
()
©
©
(%]

ntrollers -

Microco

—
N
(68)

—

Circular Addressing

* Very useful in DSP algorithms

* BK Register (Block Size Register)
Holds the size of circular buffer

a) Logical representation b) Physical representation T T L
Start End Start § = g
S5
ST
S
S
g
End (2]

FIR Filter Implementation

Impulse response X(n-3)
x(n-2)
x(n-1)

Newest x =2 x(n)
Oldest x = x(n-(N-1))

ARO —

ge
©
S
S
©
<
o
p=

=
©
©
(%]
45
[o14]
()
©
©
(%]

ntrollers -

x(.r;.-4)

Microco

—
N
(92

—

y(m) =) hk)x(n— k)
k=0

FIR Filter Main Loop

TOP LDF IN, R3
STF R3, *AR1++%

LDF 0,RO
LDF 0,R2

=
©
©
(%]
45
[o14]
()
©
©
(%]

Filter

©
=
©
n
—
o
n
73
(]
O
o
L .
Q.
o
-

2

ke
©
S
S
©
=
@]
=
1
(%]
—
A
©
—
+—
[
]
O
(@]
=
o=
=

RPTS N-1
MPYF3 %ARO++%, *AR1++%, R0
| | ADDF2 RO,R2,R2
ADDF RO,R2

3{.
—

N

(o))}
—

STF R2,Y
B TOP

Boot Loader

* A Program Written and Stored on C31 & C32 memories
* Responsible for:
Receiving the main application from EPROM, serial port, ...
And copying it into local memory
And Executing it right then
* INT pins indicate
What boot loader should do

INTO INT1 INT2 INT3 Loader Mode Memory Addresses
1 1 1 External memory Boot 1 address 0x001000
1 0 1 1 External memory Boot 2 address 0x400000
1 1 0 1 External memory Boot 3 address OxFFFQOOO

1 1 1 0 32-bit senal Serial port 0

© -
c ©
© ©
% (%]
g & W
(%]

17,) ()]
(] ©
(&) ©
(@] (%s]
s

o

o

st

2

©
©
(S
(S
©
=
)
=
1
(%]
s
9
©
o
+—
[
(@]
(8}
o
o
=
P

—
N
~

—

Branch Operations

* Three categories of branches:
Standard Branch
Empty the pipeline before performing the branch
Delayed Branch
Do not empty the pipeline, execute the next three instructions

Conditional Delayed Branch

=
©
(9%
(%)
£=
[o14]
()
©
(9%
(%}

Use the conditions that exist at the end of the instruction before the
branch

©
=
©
n
—
(]
n
n
(O]
O
o
L.
Q.
o
-

.0

©
©
S
S
©
{5
(@]
p=
1
(%]
o
9
©
o
s
=
(@]
(8}
(@]
o
=
p=

They do not depend on instructions following the branch

Condition flags are set when
* RO-R7 change
* CMPF, CMPI, TSTB executed

—
N
(0¢]

—

Pipeline

CYCLE | Fetch | Decode Read Execute
m-3 W — — —
m-2 X W — _
m-1 : 4 X W — 2 g 5

Perfect g EC
m / Y X W overlap | EicE:
m+1 - z Y X S
m+2 — — z ¥ = §
m+3 — — - 7

>

(2]

Example Standard Branch

THREE

BR
MPYF
ADD
SUBF
AND

OR
STI

THREE

Unconditional branch
Not executed
Not executed
Not executed
Not executed

Fetched after BR i1s taken

© -
= ©
© ©
% (%]
g & W
(%]

17,) ()]
(] ©
(&) ©
(@] (%s]
s

o

o

ut

2

ke
©
S
S
©
=
@]
=
1
(%]
—
A
©
—
+—
[
]
O
(@]
=
o=
=

—
W
o

—

Example Standard Branch (2)

PC | Fetch | Decode | Read | Execute |
n BR — — — Fetch held for
new PC value
n+1 MPYF BR —
n+1 (nop) (nop) BR - § g E
/—l 3—wpPCc | FEE
S3S 3
n+1 (nop) (nop) (nop) BR S v
S e
3 OR (nop) (nop) (nop) §
STI OR (nop) (nop) -

 \
(98]
=

—

Delayed Branch

PC

n+1

n+2

n+3

Pipeline Operation

Fetch |Decode | Read

BRD

MPYF

ADDF

SUBF

MPYF

BRD

MPYF

ADDF

SUBF

BRD

MPYF

ADDF

Execute

No
_ execute
delay

—/—| 3 —m PC

BRD

MPYF

© -
= ©
© ©
%) (%]
g & W
(%]

17, (]
(] ©
(&) ©
(@] (%s]
s

o

o

ut

2

©
©
1S
1S
©
E=
)
p=
1
(%]
s
9
©
=
+—
[
(@]
(8}
o
o
=
p=

—
(08)
N

—

Delayed Branch Example

®* TITLE DELAYED BRANCH EXECUTION
LDF* +AR1({5),R2 ; Load contents of memory to R2
BGED SKIP ; If loaded number =>=0, branch §§§
; {delayed) £E e
LDFN R2,R1 ; If loaded number <0, load it to R1 553
SUBRF 3.0,R1 ; Subtract 3 from R1 §ém
NOP ; Dummy operation to complete delaved g%
; branch |5
MPYF 1.5,Rl ; Continue here if loaded number <0 o
p
SKIP LDF R1,R3 ; Continue here if loaded number =>=0 (33J

