TMS320C3X Foating
Point DSP

Microcontrollers & Microprocessors Undergraduate Course
Isfahan University of Technology — Oct 2010
By : Mohammad Sadegh Sadri
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DSP

* DSP : Digital Signal Processor
* Why A DSP?
Example
Voice Recorder

 DSP
Low cost
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High Performance
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Dedicated to processing applications
Simple Architecture

Real Time Systems
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DSP Manufacturers

Texas Instruments

Analog Devices

Motorola
Now : Freescale

© -
c ©
© (5]
% (%]
S & W
(%]

17,) ()
(] ©
(&) ©
(@] n
o

o

(@]

i

.0

©
©
S
S
©
<
o
=
1
(%]
—
i)
©
—
L
c
o
O
o
-
2
=

—
(O8]
—




Digital Signal Processing in GP
CPUs

* By the time passed

More DSP functionality added to General Purpose CPUs
* Today CPUs

Contain huge hardware

For signal processing calculations
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* Example
Streaming SIMD Extension
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Two Major DSP Categories

* Floating Point * Fixed Point DSP

Higher Silicon Area is
required for
implementation of
Floating Point Unit

Higher Prices

Lower Clock
Frequencies

Lower Level of
parallelism

Easy Algorithm Design

Very difficult algorithm
design
* Designer should take
care of losing data

Smaller silicon Area
Higher clock frequency
Smaller price

Higher Level of parallelism

Totally : higher level of
performance
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Texas Instruments

TMS320C10/C25
TMS320C30/31/32/40
Floating Point
TMS320C5x
Fixed Point Ultra Low Power

TMS320C6x : MIMD architecture
TMS320C67x : Floating Point
TMS320C62x/64x : Fixed Point

Very high levels of performance
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TMS320C3x DSPs

1988
Harvard Architecture

Floating point computations
Addressing Range: 24 Bits (16Mbytes)
3 Families

TMS320C30

TMS320C31
TMS320C32

C30 : contained a boot ROM
C31/C32 : contained Boot Loader instead
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Boot Loader

What is a boot loader?
An application
Which is the first application executed by CPU

Responsible for Loading the main application into system
memory and starting it

Boot Loader is usually small
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Boot Loader contains the first instructions that are executed
by CPU

Boot loader design is tricky
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Boot loader is usually stored on a kind of flash memory
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TMS320C30 Family

Memory (words)

Cycle On-Chip Off-Chip Peripherals
Device Freq Time DMA
Name {(MHz) {ns) RAM ROM Cache Parallel Serial Channels Timers
27 75 2K 4K 64 16M x 32 2 1 2
8K x 32
285
33 B0 2K 4K 64 16M % 32 2 1 2 © £ 3
'C30 8K x 32 s Eg
Q< o
‘=N
(5V) 40 50 2K 4K 64 16M x 32 2 1 2 <
8K x 32 o 2
L5
50 40 2K 4K 64 16M % 32 2 1 2 €
8K x 32 S
2
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TMS320C32 Internal Block
Diagram

* SPRUO31e
Page 43

* Description of Buses

Program buses
PADDR, PDATA

Data buses
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2 Data memory accesses every machine cycle

DDATA, DADDR1, DADDR2, CPU1, CPU2

REG1, REG2 : no connected to memory. (Internal Bus)
DMA buses

DMAADDR, DMADATA
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Registers

* RO~ R7
8 Extended Precision Registers (40Bits)
* Exponent and Mantissa : 2’s complement

Extended-Precision Register Floating-Point Format
39 32 31 30 0

Extended-Precision Register Integer Format
39 32 31 0
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Extended Precision Range

Most positive: x=(2-2"23yx 2127 = 3.4028234 x 103%
Least positive:  x=1x2-127 =58774717 x 10-3°

Least negative: x=(-1-2-23)x 2-127 = _5 8774724 x 1039
Most negative: =-2x2127 = _3.4028236 x 1033
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Auxiliary Registers

* 8 Registers ARO~AR7

32Bits

Mainly used for Address Generation

Can be used as 32Bits General Purpose Registers
* Index Registers IRO and IR1

Used for addressing

Mohammad
Sadegh Sadri

* Two Address Generators:
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Rest of Registers

* DP : Data page pointer (similar to segment register)
* BK : Block size (Described Later)

* SP : System stack pointer

* ST : Status register

* |E : CPU/DMA interrupt enable register

* |F : CPU interrupt flag register

* |OF : 1/0 Flags register (control XFO and XF1)
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[F Bits

Table 3—-4. IF Bits and Functions

Bit Reset

Name Value Function

INTO 0  External interupt 0flag

INT1 0  External interrupt 1 flag

INT2 0  External interrupt 2 flag

INT3 0  External interrupt 3 flag - e

KINTO 0 Serial port 0 transmit flag § g E

RINTO 0 Serial port 0 receive flag % %U %D
. . 828

KINT 1 0  Serial port 1 transmit flag ('C30 only) 5 .

RINT1 Serial port 1 receive intemrupt flag (C30 only) § %

TINTO Timer 0 interrupt flag §

TINT1 Timer 1 interrupt flag §

DMAD channel interrupt flag ('C32 only)
DMA1 channel interrupt flag (C32 only)
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DINT 0 DMA channel interrupt flag ('C30 and 'C31 only)
0
0
0

Interrupt-trap table pointer (see Section 3.1.9.1)
Allows the relocation of interrupt and trap vector tables ('C32 only)




Zero-Delay Loops

* Loops: extensively used in applications

* Great amount of time is usually consumed on “Checking the
Loop Condition” in each iteration

* Hardware can handle simple loops
No over head for checking the loop condition

Mohammad
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Zero-Delay Loop Registers

* Repeat-Counter RC
RC=n
Causes n+1 iterations

* RS : Repeat Start Address

* RE : Repeat End Address
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LDI 15,RC
RPTEB  ENDLOOP

STLOOP
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Memory Map

Page 92
Microcomputer/Boot Loader Mode

Page 97
Peripheral related Memory Mapped Registers
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Addressing Modes

* Register Addressing
Register contains the operand

ARSF R1 ; Rl = |R1]|

* Direct Addressing
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Instruction contains address of operand directly

ADDI  @ORBCDEh, R7
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* Indirect Addressing
Auxiliary register contains the address to operand

LDI *ARO, RO

 \
=
(o)

—




Indirect Addressing

MPYF  *ARZ2++,R1

MPYF *++ARO(IR1),RO

LDF *~-AR3(2),R1
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Indirect Addressing (2)

Syntax Operation
*+ARN0isp) addr= ARn + disp
*— AR N disp) addr = ARn - disp

*++ARNdisp) addr = ARn + disp
ARn =ARn + disp

——ARN(disp) addr= ARn - disp
AR =ARnN - disp

TAR++(disp) addr=ARn
ARn=ARn + disp

TARNM——(disp) addr= ARn
AR =ARnN - disp
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Circular Addressing

*ARm++{disp)% addr=ARn <€
ARn = circ{ARn + disp)

ARN——(disp)% addr=ARn
AR = circ{AR n — disp)
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Indirect Addressing (3)

Syntax Operation

+ARN(IRO) addr=ARn+ IRO
—ARNIRO) addr= ARn- IRO
*++ARN(IRO) addr= ARn+ IRO

ARnN=ARnN+IRO

*——ARN(IRO) addr=ARn- IR0
ARnN=ARnN - IR0

*ARn++{IR0O) addr = ARn
ARnN=ARn + IR0

*ARnM——(IRO) addr=ARn
ARnN=ARn - IR0

*ARM+(IR0)%  addr=ARn
ARn =circlARn + IR0O)

"ARN——(IR0)% addr=ARn
ARn = circ{ARn— IR0)
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Indirect Addressing (4)

* Bit reversed addressing

Syntax Operation
"ARnN addr=ARn
"ARN++(IRO)B addr= ARn

AR =B(ARn + IRO)
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Circular Addressing

* Very useful in DSP algorithms

* BK Register (Block Size Register)
Holds the size of circular buffer

a) Logical representation b) Physical representation T T L
Start End Start § = g
S5
ST
S
S
g
End ( 2 ]




FIR Filter Implementation

Impulse response X(n-3)
x(n-2)
x(n-1)

Newest x =2 x(n)
Oldest x = x(n-(N-1))
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FIR Filter Main Loop

TOP LDF IN, R3
STF R3, *AR1++%

LDF 0,RO
LDF 0,R2
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Boot Loader

* A Program Written and Stored on C31 & C32 memories
* Responsible for:
Receiving the main application from EPROM, serial port, ...
And copying it into local memory
And Executing it right then
* INT pins indicate
What boot loader should do

INTO INT1 INT2 INT3 Loader Mode Memory Addresses
1 1 1 External memory Boot 1 address 0x001000
1 0 1 1 External memory Boot 2 address 0x400000
1 1 0 1 External memory Boot 3 address OxFFFQOOO

1 1 1 0 32-bit senal Serial port 0
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Branch Operations

* Three categories of branches:
Standard Branch
Empty the pipeline before performing the branch
Delayed Branch
Do not empty the pipeline, execute the next three instructions

Conditional Delayed Branch
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Use the conditions that exist at the end of the instruction before the
branch
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They do not depend on instructions following the branch

Condition flags are set when
* RO-R7 change
* CMPF, CMPI, TSTB executed
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Pipeline

CYCLE | Fetch | Decode Read Execute
m-3 W — — —
m-2 X W — _
m-1 : 4 X W — 2 g 5

Perfect g EC
m / Y X W overlap | EicE:
m+1 - z Y X S
m+2 — — z ¥ = §
m+3 — — - 7

>

(2]




Example Standard Branch

THREE

BR
MPYF
ADD
SUBF
AND

OR
STI

THREE

Unconditional branch
Not executed
Not executed
Not executed
Not executed

Fetched after BR i1s taken
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Example Standard Branch (2)

PC | Fetch | Decode | Read | Execute |
n BR — — — Fetch held for
new PC value
n+1 MPYF BR —
n+1 (nop) (nop) BR - § g E
/—l 3—wpPCc | FEE
S3S 3
n+1 (nop) (nop) (nop) BR S v
S e
3 OR (nop) (nop) (nop) §
STI OR (nop) (nop) -
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Delayed Branch

PC

n+1

n+2

n+3

Pipeline Operation

Fetch |Decode | Read

BRD

MPYF

ADDF

SUBF

MPYF

BRD

MPYF

ADDF

SUBF

BRD

MPYF

ADDF

Execute

No
_ execute
delay

—/—| 3 —m PC

BRD

MPYF
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Delayed Branch Example

®* TITLE DELAYED BRANCH EXECUTION
LDF* +AR1({5),R2 ; Load contents of memory to R2
BGED SKIP ; If loaded number =>=0, branch §§§
; {delayed) £E e
LDFN R2,R1 ; If loaded number <0, load it to R1 553
SUBRF 3.0,R1 ; Subtract 3 from R1 §ém
NOP ; Dummy operation to complete delaved g%
; branch |5
MPYF 1.5,Rl ; Continue here if loaded number <0 o
p
SKIP LDF R1,R3 ; Continue here if loaded number =>=0 (33J




