CACHE MEMORY & SRAM/DRAM TIMING

An introduction to cache memories and their architecture Microprocessor and Microcontrollers Course – Isfahan University of Technology – Mohammad Sadegh Sadri

Storages

- CPU needs memory
 - Program
 - Data
- Memories
 - Volatile memory
 - RAM
 - Non-Volatile memory
 - Hard disk
 - Flash

Storage Speed

- RAM is faster than
 - Hard disk and flash
- Access to RAM is easier
 - Compared to hard disk and flash

Basic Idea

- Hard disk is slow
- Access to it is difficult
- So:
 - Put a memory between hard disk and CPU
 - Now move Mostly Used Data and Instructions to this memory
 - Allow CPU to read from/write to this memory

Basic Idea Expansion (1)

- DRAM memory
 - Large
 - Slow
- SRAM memory
 - Fast
 - Small
- Idea
 - Put a fast SRAM memory between DRAM and CPU
 - Store Mostly Used Data and Instructions on this SRAM memory
 - Allow CPU to use this memory

Basic Idea Expansion (2)

- When CPU needs an instruction
- Look into fast SRAM memory and check
 - If the instruction exist → Give it to CPU
 - If the instruction does not exist →
 - Read it from large DRAM
 - Give it to CPU
 - Update the contents of SRAM memory

Basic Idea Expansion (3)

- When CPU wants to store/read a data
 - Look into fast SRAM memory
 - Check if any of SRAM memory locations has been associated with this memory address
 - If yes: store the data into this location (or read data from this location)
 - If no: store data into main DRAM memory
 - And also in SRAM memory

Cache Memory

- A "faster" small memory
- Stores frequently used data
- To shorten access time
- Caches are every where:
 - CPU cache
 - Hard disk cache
 - Operating system cache
 - •

Multi-Level Caches

Microcontrollers - Mohammad

Microprocessors and Microcontrollers - Mohammad Sadegh Sadri

Basic Cache Operation

1 Cache Line (Row, Entry)

Tag Data Block Valid Bit

- Main memory is divided into blocks
- Each block can be cached in only one cache row
- Fasted search speed (best hit time, worst hit rate)

Microcontrollers - Mohammad

Direct Mapped Cache

Each location in main memory can be cached by just one cache location.

Direct Mapped Cache

- Can some times be very bad!
- Suppose both of A, B and C are stored in the same memory block in the following code

```
for ( i = 0 ; i < 10; i++ )
A[i] = B[i] + C[i];
```

Fully Associative Cache

- Each main memory location
 - Can be cached in all of the cache memory lines
- When CPU wants to access a memory location
 - All of the cache lines should be searched first.
- Slowest search (worst hit time)
- Best hit rate
- There are some techniques to speed up the search

Set-Associative Cache

- Cache will be divided into sets
 - Each set is 2,4,8 or ... cache lines
- The content of each memory block
 - Can be cached in any of cache lines in a specific set
- Doubling the associativity
 - For example from direct mapped to 2-way
 - Has same effect on hit rate as: doubling the cache size
- Trade off between hit rate, and hit time

2-Way Set Associative Cache

AMD Athlon 64 Cache

Detailed operation of DRAM and SRAM memories

DRAM VS. SRAM

Asynchronous SRAM

Example : CYPRESS CY7C10612DV33 (16Mbits : 1M*16, 10ns)

What is chip enable?

Usually CPU is connected to multiple devices on the same bus

What is chip enable? (2)

Usually CPU is connected to multiple devices on the same bus

What is chip enable? (3)

Usually CPU is connected to multiple devices on the same bus

Async-SRAM Read Cycle

Async-SRAM Write Cycle

Synchronous SRAM

- Similar to Async SRAM
- But
 - Every Read and Write operation is done with Clock pulse edges
- Example:
 - Cypress CY7C1460
 - 36MBits 2M*18
 - No-Bus-Latency Synchronous SRAM (NoBL Architecture)
- No-Bus-Latency:
 - There is no delay for switching between read and write operations

Read/Write Timing

Page 22, component's data sheet

DRAM Memory

- Access to DRAM memory is very complicated (compared to SRAM)
- DRAM accept commands (there is not just a simple WEn signal)
- DRAM accepts Address in 3-phases
 - Bank Address
 - Row Address
 - Column Address

Micron MT46V64M16

- Total number of : 1G bits
 - 4 Banks
 - 16M lines
 - Each line is 16Bits

Timings

- Page 53 Datasheet
- Page 64 Datasheet