General representation of floating point

SIGN EXPONENT
1 bit $\quad 8$ bits

MANIISSA
23 bits
© 17 (decimal) $=10001$ (binary)
○ $10001=0.10001 \times 2^{\wedge} 5$
o Then, we can now construct its representation

1 bit	5 bits	8 bits

0001011000100

sign field:
0 : positive value
1 : negative value

What if we want to store a negative exponent value?
o The previous example can't handle this problem, thus we could fix that by using biased exponent.
o For example, if we want to store 0.25, we will have $0.1 \times 2^{\wedge}-1$
o We can fix this by using excess-16 representation. So that we add 16 to the negative exponent ($-1+16=15$).

0011111000000

Another problem using this method

01010110001000

0 0 1011100100010
$=17$

01100000010001
We don't have a unique representation for each number.

Remedy

o This problem can be fixed by normalization.
o Normalization is a convention that the leftmost bit of the significand must always be 1. So that we only have

0011111000100

for decimal value 17.

Floating Point Arithmetic

o Addition

01001011001000

01000010011010
11.001000
0.10011010
11.10111010

01001011101110

o Multiplication

$01000010011010=0.1001010 \times 20$

$0.11001000 \times 0.10011010=0.0111100001010000$ $2^{\wedge} 2 \times 2^{\wedge} 0=2^{\wedge} 2$

01000111110000

Some other problems in floating point arithmetic

- Division by zero.
o Overflow, if the result is greater in magnitude than the given storage.
o Underflow, if the result is smaller in magnitude than the given storage.

The IEEE-754 Floating-Point Standard

o This was first introduced in 1985.
o This type of floating point includes two formats: single precision and double precision.

Single Precision IEEE-754

1bit	8 bits	23bits

o This representation uses an excess-127
o This representation assumes an implied 1 to the left of the radix point, for example we put $1=1.0 \times 2^{\wedge}(0+127)$

Floating Point Number		Single Precision Representation	
1.0	0	01111111	00000000000000000000000
0.5	0	01111110	00000000000000000000000
19.5	0	10000011	00111000000000000000000
-3.75	1	10000000	11100000000000000000000

Double Precision IEEE-754

1 bit	11 bits	52 bits

o This representation uses an excess1023

- This representation assumes an implied 1 to the left of the radix point, for example we put $1=1.0 \times 2^{\wedge}(0+1023)$. (same as the single precision)

Range, Precision, and Accuracy

- Range

In double precision, for example, we have

