General representation of floating point

- I7 (decimal) = 10001 (binary)
- 10001 = 0.10001 x 2^5
- Then, we can now construct its representation

What if we want to store a negative exponent value?

- The previous example can't handle this problem, thus we could fix that by using biased exponent.
- For example, if we want to store 0.25, we will have 0.1 x 2⁻¹
- We can fix this by using excess-16 representation. So that we add 16 to the negative exponent (-1 + 16 = 15).

0 01111 1000000

We don't have a unique representation for each number.

Remedy

- This problem can be fixed by <u>normalization.</u>
- Normalization is a convention that the leftmost bit of the significand must always be 1. So that we only have

for decimal value 17.

Floating Point Arithmetic

Addition

0 10010 11001000

0 10000 10011010

11.001000 0.10011010 11.10111010

0 10010 11101110

0 10010 11001000 t = 0.11001000 x 2^2

0 10000 10011010 = 0.10011010 x 2^0

0.11001000 x 0.10011010 = 0.0111100001010000 2^2 x 2^0 = 2^2

0 10001 11110000

Some other problems in floating point arithmetic

Oivision by zero.

- Overflow, if the result is greater in magnitude than the given storage.
- Underflow, if the result is smaller in magnitude than the given storage.

The IEEE-754 Floating-Point Standard

This was first introduced in 1985.

 This type of floating point includes two formats: single precision and double precision.

Single Precision IEEE-754

This representation uses an excess-127
This representation assumes an implied 1 to the left of the radix point, for example we put 1 = 1.0 x 2^(0+127)

Floating Point Number	Single Precision Representation					
1.0	0	01111111 000000000000000000000000000000				
0.5	0	01111110 000000000000000000000000000000				
19.5	0	10000011 001110000000000000000000000000				
-3.75	1	1000000 11100000000000000000000				

Mohammad Sadegh Sa

Double Precision IEEE-754

- This representation uses an excess-1023
- This representation assumes an implied 1 to the left of the radix point, for example we put 1 = 1.0 x 2⁽⁰⁺¹⁰²³⁾. (same as the single precision)

Range, Precision, and Accuracy

Range

In double precision, for example, we have

Negative Overflow <	Expressible Negative Number	Negative Underflow	Positive Underflow	Expressible Positive Numbers	Positive Overflow	
-1.0 x 10	0^308 -1.0 x [/]	10^-308	0 1.0 x 1	10^-308 1.0) x 10^308	