INTRODUCTION TO CPU

Mohammad Sadegh Sadri
Session 2 Microprocessor Course
Isfahan University of Technology
Sep., Oct., 2010
Agenda

• Review of the first session
• A tour of silicon world!
• Basic definition of CPU
• Von Neumann Architecture
 • Example: Basic ARM7 Architecture
 • A brief detailed explanation of ARM7 Architecture
• Harvard Architecture
 • Example: TMS320C25 DSP
Agenda (2)

- History of CPUs
 - 4004
 - TMS1000
 - 8080
 - Z80
 - Am2901
 - 8051
 - PIC16
Von Neumann Architecture

- Same Memory
 - Program
 - Data
- Single Bus
Sample: ARM7T CPU
Harvard Architecture

- Separate memories for program and data
TMS320C25 DSP

[Diagram of TMS320C25 DSP with labels and connections]
Silicon Market

<table>
<thead>
<tr>
<th>Rank 2009</th>
<th>Rank 2008</th>
<th>Company</th>
<th>Country of origin</th>
<th>Revenue (million $ USD)</th>
<th>2009/2008 changes</th>
<th>Market share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Intel Corporation</td>
<td>USA</td>
<td>32 410</td>
<td>-4.0%</td>
<td>14.1%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Samsung Electronics</td>
<td>South Korea</td>
<td>17 496</td>
<td>+3.5%</td>
<td>7.6%</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Toshiba Semiconductors</td>
<td>Japan</td>
<td>10 319</td>
<td>-6.9%</td>
<td>4.5%</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Texas Instruments</td>
<td>USA</td>
<td>9 617</td>
<td>-12.6%</td>
<td>4.2%</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>STMicroelectronics</td>
<td>Italy</td>
<td>8 510</td>
<td>-17.6%</td>
<td>3.7%</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>Qualcomm</td>
<td>USA</td>
<td>6 409</td>
<td>-1.1%</td>
<td>2.8%</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>Hynix</td>
<td>South Korea</td>
<td>6 246</td>
<td>+3.7%</td>
<td>2.7%</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>AMD</td>
<td>USA</td>
<td>5 207</td>
<td>-4.6%</td>
<td>2.3%</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Renesas Technology</td>
<td>Japan</td>
<td>5 153</td>
<td>-26.6%</td>
<td>2.2%</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>Sony</td>
<td>Japan</td>
<td>4 468</td>
<td>-35.7%</td>
<td>1.9%</td>
</tr>
</tbody>
</table>
Silicon Market (2)

• Total 2009 sales
 • 229,917,000,000 US$
• 2009 sales growth: -11.7%
• Total 2008 sales
 • 258,304,000,000 US$
Intel 4004 (1)
Intel 4004 (2)

- 1971
- Just a calculator (not for industry)
- 4-bits CPU
 - ALU: 4bits
 - Instructions: 8bits
- Separate program and Data memories
 - 1K data memory
 - 4K program memory
 - PC width?
Intel 4004 (3)

- Registers
 - Sixteen 4 bits registers
- Stack
 - 4 Level stack
- Instructions
 - 46
- Clock frequency : 740kHz
- 2300 transistors
- Speed : 92,000 instructions per second
Intel 4004 (4)
Intel 4004 (5)

- Single multiplexed 4 bit bus:
 - 12 bit addresses
 - 8 bit instructions
 - 4 bit data
Intel 4004 (6)

• Supported Chips:
 • 4001: 256Bytes ROM
 • 4002: 40Bytes RAM
 • 4003: 10bit shift register
 • 4008: 8bit address latch
 • 4009: programmed I/O access
 • 4269: keyboard, display interface
Texas Instruments TMS1000
Texas Instruments TMS1000 (2)
Texas Instruments TMS1000 (3)

- 1974
- First Micro-controller
 - Computer on a chip
 - MPU, RAM, ROM, Timers
- Clock
 - 300KHz
- Address space
 - 1KB
Texas Instruments TMS1000 (4)

- RAM
 - 32 Bytes
- ROM
 - 1KBytes
- Instructions
 - 31
- Registers: different size each!
- PC: not a counters, but a shift register!
Intel 8080

- 1974
- 8bits CPU
- Buses
 - 16bits address bus
 - What range?
 - 16bits PC
 - 16bits Stack Pointer
 - 8bits data bus
- 7 registers : 8bits each
Intel 8080 (2)

- Some registers could join to make 16bits registers
- Separate
 - Memory port
 - To talk to external memory
 - I/O port
 - To talk to external peripherals and devices
- Update: 8085 (1976)
 - Added interrupt pins and serial I/O pins
Zilog Z80

- 1976
- An improved 8080
 - 80 additional instructions
 - Block move instructions
 - Bit manipulation
 - 2 Register banks
 - Suitable for interrupt handling
- Federico Faggin
 - Left Intel at 1974
 - After his work on 8080
 - Founded Zilog
Zilog Z80 (2)

- **Clock Frequency:**
 - 2.5MHz to 20 MHz (NMOS to CMOS)

- **Memory interface**
 - Z80 capable of generating DRAM refresh signals itself

- **CP/M**
 - First operating system for microprocessors
 - Mainly designed for 8080
 - Z80 and 8080 were code compatible

- **Extensions to Z-80**
 - Z180, Z280, Z800
 - eZ80 : 24bits core
Zilog Z80 (3)
Zilog Z80 (4)
Zilog Z80 (5)

• Registers
 • A : Accumulator
 • F : Flags
 • Carry, Zero, Parity, ...
 • BC, DE, HL : 8/16bits registers
 • 8bits for computations
 • 16bits for address generation
 • SP : 16bits stack pointer
 • PC : 16bits program counter
 • IX , IY : 16bit index register
 • R : 8bits DRAM refresh counter
 • I : 8bits interrupt vector, base register
• Shadow registers : AF’, BC’, DE’, HL’
Zilog Z80 (6)

- Addressing modes:
 - Immediate:
 - LD A,FFH
 - LD HL,1234H
 - Page zero (used for jumps and calls)
 - Relative (used for jumps and calls)
 - Extended addressing (used for jumps and calls)
 - Indexed addressing
 - LD A,(IX+1)
 - LD A,(IY-4)
 - Register indirect addressing
 - LD A,(HL)
Zilog Z80 (7)

The assembly program:

```
ORG 100H ;Locate program at 100H
LD HL,1234H ;Address of first number
LD A,(HL) ;Operand 1 into Accu
INC HL ;Address of 2nd number
ADD A,(HL) ;Addition
INC HL ;Address of result (sum)
LD (HL), A ;store result
END ;end of program

ORG 1234H ;Location of the data
DB 100,200 ;put 64H and C8H
```
Zilog Z80 (8)

- Instruction: LD A,(HL)
Zilog Z80 (9)

- Instruction: OUT n,A
AMD AM2901

- 4bits CPU
 - 4-bit-slice processor
- Contained ALU and control signals
 - 8bit ALU consists of two 4bits ALU
- 16 registers 4bits each
- AM2903 : contained multiply operation
- AMD9511 : First floating point coprocessor
 - 1979
 - 32bits operations
Intel MCS-51

- 1977
- Microcontroller
 - On-chip RAM and ROM
- 2bytes instruction set
- Over 1Billion sold from 1988
- Extensions by Siemens and TI
- Available widely today
 - In different forms
Intel MCS-51 (2)

- Four separate register sets
- Internal static RAM:
 - 80C51 : 128 Bytes
 - 80C52 : 256 Bytes
 - Address Range : 0x0 – 0xff
 - 0x0 – 0x7f : can be accessed directly (128bytes)
 - Example: MOV A, 30h
 - 0x7f – 0xff : should be accessed indirectly
 - Example: MOV A, @R0
 - 0x7f – 0xff : Are control registers of 8051 (Special Function Registers)
 - 0x20 – 0x2f : bit accessible
- Internal program memory
- Support for external memory
MCS-51 Internal Memory

<table>
<thead>
<tr>
<th>IRAM Addr</th>
<th>R0</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>R0</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
<td>R5</td>
<td>R6</td>
<td>R7</td>
</tr>
<tr>
<td>10</td>
<td>R0</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
<td>R5</td>
<td>R6</td>
<td>R7</td>
</tr>
<tr>
<td>18</td>
<td>R0</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
<td>R5</td>
<td>R6</td>
<td>R7</td>
</tr>
<tr>
<td>20</td>
<td>00</td>
<td>08</td>
<td>10</td>
<td>18</td>
<td>20</td>
<td>28</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>28</td>
<td>40</td>
<td>48</td>
<td>50</td>
<td>58</td>
<td>60</td>
<td>68</td>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

- Reg. Bank 0
- Reg. Bank 1
- Reg. Bank 2
- Reg. Bank 3
- Bits 00-3F
- Bits 40-7F
- General User RAM & Stack Space (80 bytes, 30h-7Fh)
- General IRAM
- Special Function Registers (SFRs) (80h - FFh)
- SFRs
MCS-51 Internal Memory
MCS-51 Bit Memory

• Addresses : 20H – 30H
• Bit Address: 00H – 7FH (128bits total)
• Instruction sample:
 • SETB 24H
 • CLR 25H
 • MOV 20H,#0FFH
 • Equivalent to 8 SETB operations
• Bit Address: 80H – FFH
 • Used for accessing SFR
 • Example:
 • MOV P0,#01
 • SETB 80H
MCS-51 (3)

- Supported Peripherals
 - UART
 - universal asynchronous receiver transmitter
 - Serial interface (TX/RX)
 - Timers
 - time measurement
 - Make an event happen in a specified intervals
 - I2C
 - inter-integrated circuit bus
 - Multi-master bus
 - Mainly to transfer control data
 - SPI
 - Serial peripheral interconnect
 - Serial data transfer for memories
MCS-51 (4)

- Supported peripherals (2)
 - USB
 - Peripheral
 - Host
- CAN
 - Controller-area network
 - A bus to allow microcontrollers talk to each other in a vehicle
 - Without a host computer
 - Now also used in industrial automation and medical equipment
- PWM generator
 - Generate PWM pulses
MCS-51 (5)

- Supported Peripherals
 - Analog comparator
 - A/D and D/A
 - RTC
 - A computer clock
 - Keeps track of the current time
 - Keeps accurate time and date
MCS-51 Special Function Registers

<table>
<thead>
<tr>
<th>Address</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>P0</td>
</tr>
<tr>
<td>81</td>
<td>SP</td>
</tr>
<tr>
<td>82</td>
<td>DPL</td>
</tr>
<tr>
<td>83</td>
<td>DPH</td>
</tr>
<tr>
<td>84</td>
<td>TCON</td>
</tr>
<tr>
<td>85</td>
<td>TMOD</td>
</tr>
<tr>
<td>86</td>
<td>TL0</td>
</tr>
<tr>
<td>87</td>
<td>TH0</td>
</tr>
<tr>
<td>88</td>
<td>TL1</td>
</tr>
<tr>
<td>89</td>
<td>TH1</td>
</tr>
<tr>
<td>90</td>
<td>P1</td>
</tr>
<tr>
<td>91</td>
<td>SBUF</td>
</tr>
<tr>
<td>92</td>
<td>SCON</td>
</tr>
<tr>
<td>93</td>
<td>IE</td>
</tr>
<tr>
<td>94</td>
<td>P2</td>
</tr>
<tr>
<td>95</td>
<td>IP</td>
</tr>
<tr>
<td>96</td>
<td>P3</td>
</tr>
<tr>
<td>97</td>
<td>B</td>
</tr>
<tr>
<td>A0</td>
<td>C</td>
</tr>
<tr>
<td>A1</td>
<td>D</td>
</tr>
<tr>
<td>A2</td>
<td>E</td>
</tr>
<tr>
<td>A3</td>
<td>F</td>
</tr>
<tr>
<td>A4</td>
<td>PSW</td>
</tr>
<tr>
<td>A5</td>
<td>ACC</td>
</tr>
<tr>
<td>A6</td>
<td>B</td>
</tr>
</tbody>
</table>

- **Blue background** are I/O port SFRs
- **Yellow background** are control SFRs
- **Green background** are other SFRs
MCS-51 Ports

- 8051/52 has 4 ports
 - General purpose I/O
 - P0, P1, P2, P3

- Using external memory:
 - Program is stored outside 8051
 - P0 & P2 will be used for memory interfacing
MCS-51 Stack Pointer

- SP points to the tail of the stack
- PUSH A
 - SP ← SP+1
 - Value A will be stored in memory address : SP
- POP A
 - Value A will be read from memory address : SP
 - SP ← SP – 1
- Instructions that change SP:
 - CALL, RET, POP, PUSH, interrupts
MCS-51 SFRs

- **DPL/DPH** : DPTR , Data pointer
 - 16bits register
 - Used for addressing external operands
- **PCON** : Power control
 - Sleep mode
- **TCON** : Timer control
 - Stop, start , overflow...
- **TMOD** : Timer mode
 - 16bits timers/13bits/ two separate 8bits
 - Count what? Events? External pin changes?
- **TL0/TH0 , TL1/TH1** : Timers
 - Always count up
MCS-51 SFRs (2)

- SCON: serial control
 - Baud rate
 - Start/stop
 - Flags
- SBUF: serial port data buffer
- IE: Interrupt enable
- IP: interrupt priority
 - Example: High priority for serial interrupt
- PSW: program status word
 - Carry flag, overflow flag, parity flag,…
 - Register bank select bits
- ACC: Accumulator
 - MOV E0H,#20h == MOV A,#20h
- B: used for divide and multiply operations
MCS-51 Addressing Modes

- Immediate addressing
 - MOV A,#20h
- Direct Addressing
 - MOV A,30h
- Indirect Addressing
 - MOV A,@R0
- External Addressing
 - MOVX A,@DPTR
- Code Indirect
 - MOVC A,@DPTR
Intel MCS-51
Microchip Corporation

• Created 1987
 • A “General Instrument” company spin off

• Products
 • Micro-controllers
 • PIC16/18
 • PIC24/32
 • dsPIC
 • Serial storage :
 • Serial EEPROM
 • Serial SRAM
 • USB controllers
 • ZigBee interfaces
Microchip PIC

- 1975
- PIC : Programmable Interface Controller
- Designed in Harvard University
 - To be used in a commercial product
 - In “General Instrument” company
- A new company born
 - Arizona Microchip Technology
- 2008:
 - Microchip announced its six billionth PIC processor shipment
PIC Micro-controllers

- No difference between
 - Memory space
 - Register space
 - RAM serves as: memory & registers

- Banking mechanism
 - Extend addressing range
 - Data transfers should happen within a bank
 - Or accumulator should be used as temporary storage
 - Later versions
 - Move instructions
 - Capable of addressing whole memory range

- Generally
 - No external memory interface
 - Exception: PIC17 & high pin count PIC18
 - Shadow registers in PIC18 for interrupts
Code Space

- ROM
- EPROM
- Flash ROM

Addressing in program memory:
- Is not based on Bytes
- Depends on length of instructions
- For example:
 - Each memory cell is 12Bits
 - There are total number of 128cells of 12Bits each
 - Example: 4096*14bits for 16F690

- Stack
 - Is not accessible from software

- PIC18
 - Byte addressable memory
 - Software based stack
PIC Performance

- Each instruction
 - Takes 2 instruction cycle to execute
- Execution time
 - Number of instructions * 2
- Interrupt latency is constant
 - 3 instruction cycles
- Measuring performance of a portion of code:
 - Profiling
Real-time system

• A system
 • Which should produce response to input
 • In a specified amount of time

• Profiling
 • Important in making real-time systems

• A program that performs profiling:
 • Profiler

• Every CPU architecture
 • Has its own profiler

• Example:
 • Intel VTune Performance Analyzer
PIC Compilers

- C compiler
- 2008
 - Microchip announced their own compiler
 - For 18F, 24F and 30F devices
- In contrast
 - Atmel AVR
 - Supported by GNU C compiler
PIC10 & PIC16

• PIC16x
 • 33 fixed length 12bits instructions (RISC)
 • 32Bytes register file
 • 2 level deep call stack
 • First 7 to 9 bytes of register file: special purpose registers
 • Bank number : higher 3bits of FSR
 • Registers 0-15 are global
 • Not affected by bank select bits
 • Registers 16-31
 • Will change by bank select bits
Microchip PIC17/18

• PIC17x
 • 16Bits op-codes
 • 16 level deep call stack
 • Read access to code memory
 • Direct register to register moves
 • External program memory interface
 • Single-cycle 8bits multiply
 • 64K-word program space (2K to 8K on chip)

• PIC18x
 • We will have a close look later
dsPIC and PIC24

- 16bits micro-controllers
- Mass production: 2004
- dsPIC: digital signal processing capabilities

Features
- Added 16 registers
- Stack in RAM
- Direct access to data in program memory
- Interrupt sources may be assigned to handlers
 - Interrupt vector table
dsPIC

- Supported by: GNU C compiler
- Support for
 - Hardware MAC
 - Single cycle 16X16 multiplication
 - Barrel shifter
 - Direct Memory Access operations

- We will talk about capabilities of DSP chips in depth later!
PIC32

- 2007
- Based on MIPS32 M4K Core
- Supported by GCC
- …
Intel 80x86

- 1978
- 16Bits CPU
- 1979 : Intel 8088
 - The same architecture as 8086
 - 8Bits data bus instead of 16Bits bus
 - Used in first IBM PC
- Clock frequency: 5 – 10MHz
At the time of 8086

- Intel 8085 (1977)
- Motorola 6800 (1974)
- Microchip PIC16X (1975)
- MOS Technology 6502 (1975)
- Zilog Z80 (1976)
- Motorola 6809 (1978)
8086

- Project: Spring 1976 – Summer 1978
- Backward compatible
 - 8008, 8080, 8085
- Support for
 - Full 16Bits processing
- Base + Offset addressing
- Self repeating operations
- Micro-coded Multiply & Divide
- Bus structure adapted to co-processors
 - 8087 / 8089
Area & Naming

- 20,000 transistors
- Naming
 - Used in most of the later CPUs
 - 80286, 80386, 80486, 80586 …
8086 pin out
8086 Modes

• 8086 Minimum Mode
 • Normal mode of operation
 • One CPU is connected to other peripherals

• 8086 Maximum Mode
 • Used when there are multiple processors in system
 • Bus control signals by 8288 bus controller

• IBM/PC
 • Maximum mode
 • CPU + co-processor
8086 Registers

Main registers

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>AL</td>
<td>AX</td>
</tr>
<tr>
<td>BH</td>
<td>BL</td>
<td>BX</td>
</tr>
<tr>
<td>CH</td>
<td>CL</td>
<td>CX</td>
</tr>
<tr>
<td>DH</td>
<td>DL</td>
<td>DX</td>
</tr>
</tbody>
</table>

AX (primary accumulator)

BX (base, accumulator)

CX (counter, accumulator)

DX (accumulator, other functions)

Index registers

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>Source Index</td>
</tr>
<tr>
<td>DI</td>
<td>Destination Index</td>
</tr>
<tr>
<td>BP</td>
<td>Base Pointer</td>
</tr>
<tr>
<td>SP</td>
<td>Stack Pointer</td>
</tr>
</tbody>
</table>

Source Index

Destination Index

Base Pointer

Stack Pointer
8086 Registers

<table>
<thead>
<tr>
<th>Status register</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0</td>
<td>(bit position)</td>
</tr>
<tr>
<td>- - - - - O D I T S Z - A - P - C</td>
<td>Flags</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segment register</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Code Segment</td>
</tr>
<tr>
<td>DS</td>
<td>Data Segment</td>
</tr>
<tr>
<td>ES</td>
<td>Extra Segment</td>
</tr>
<tr>
<td>SS</td>
<td>Stack Segment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction pointer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Instruction Pointer</td>
</tr>
</tbody>
</table>
8086 Flags

- **O**: Overflow
 - Set when MSB is set or cleared
- **D**: Direction
 - Direction of string operation
- **I**: interrupt enable
 - Set this, enable maskable interrupts
 - NMI is always active
- **T**: single step flag
- **S**: sign
 - Set when MSB of the result is set
- **Z**: Zero flag
- **A**: Some kind of carry
- **P**: Parity flag
 - Set if number of 1 is even
- **C**: Carry flag
 - Set if carry from MSB, or Borrow to MSB happened
Segmentation

• Registers : 16Bits
• External address bus: 20Bits
• Address generation:
 • Segment Register $\ll 4 + \text{Offset Register}$
• Could address 1MBytes
• Pointers
 • Near : inside a segment
 • Far : every where!
Memory Models

- Compilers
 - Different memory models for programs
 - To specify default pointer size
- Tiny (max 64kbytes)
- Small (128kbytes)
- Compact (data > 64kbytes)
- Medium (code > 64kbytes)
- Large (code, data > 64kbytes)
- Huge (arrays > 64kbytes)
8086

- Separate Memory and I/O space
 - 64kbyte I/O space
- Multiplexed address and data bus
 - Limited performance
- 256 Interrupts
Co-Processors

- 8086
 - Capable of connecting to co-processor chips
 - Floating point calculations
- 8087
 - Math co-processor
 - 80bit values
Compatible Versions

- By
 - Fujitsu
 - Harris/Intersil
 - OKI
 - Siemens
 - Texas Instruments
 - NEC
 - Mitsubishi
 - AMD
 - Soviet Union
Intel 8087

- 1980
- First floating point co-processor for 8086
- 45,000 transistors
- Computation performance
 - 50,000 FLOPS
- 8087 can be paired with 8086, 8088
- All 8087 Assembly instructions begin with
 - FADD, FMUL, FCOM
- All 8087 op-codes begin with
 - 11011 pattern (27 decimal)
Intel 8087

- Registers
 - Not addressable directly

- 8 registers
 - Make a stack
 - 8 levels deep
 - Each register: 80 bits
 - St0 to st7

- Design of 8087
 - Basis of IEEE 754 standard
 - 80387: first co-processor meeting IEEE standard completely

- Data types in 8087
 - 32/64/80 Bits
8087 Instruction Execution

- 8087
 - Directly connected to Data and Address buses of 8086 CPU
- 8086
 - Gives control to 8087
 - When it encounters instructions that begin with 27
 - 8087 gives the control back when finished with operations
- Later co-processors
 - Did not connect to buses directly
 - Instruction was given by CPU itself
A BRIEF LOOK…

CHAPTER 2
Logic Gates

• NOT
 • 2 transistors
• FET switches
 • Built using Silicon
 • Not ideal
• Leakage current
• Manufacturing technology
• Clock frequency
Transistor Count

<table>
<thead>
<tr>
<th>Function</th>
<th>Transistor count</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>2</td>
</tr>
<tr>
<td>BUF</td>
<td>4</td>
</tr>
<tr>
<td>NAND 2-input</td>
<td>4</td>
</tr>
<tr>
<td>XOR 2-input</td>
<td>6</td>
</tr>
<tr>
<td>XNOR 2-input</td>
<td>8</td>
</tr>
<tr>
<td>NOT MUX 2-input</td>
<td>8</td>
</tr>
<tr>
<td>MUX 4-input</td>
<td>24</td>
</tr>
<tr>
<td>Adder full</td>
<td>28</td>
</tr>
<tr>
<td>Latch, D gated</td>
<td>8</td>
</tr>
<tr>
<td>Flip-flop, edge triggered dynamic D with reset</td>
<td>12</td>
</tr>
</tbody>
</table>
CPU transistor count (1)

<table>
<thead>
<tr>
<th>Processor</th>
<th>Transistor count</th>
<th>Date of introduction</th>
<th>Manufacturer</th>
<th>Process</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel 4004</td>
<td>2,300</td>
<td>1971</td>
<td>Intel</td>
<td>10 µm</td>
<td></td>
</tr>
<tr>
<td>Intel 8008</td>
<td>3,500</td>
<td>1972</td>
<td>Intel</td>
<td>10 µm</td>
<td></td>
</tr>
<tr>
<td>MOS Technology</td>
<td>3,510</td>
<td>1975</td>
<td>MOS Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel 8080</td>
<td>4,500</td>
<td>1974</td>
<td>Intel</td>
<td>6 µm</td>
<td></td>
</tr>
<tr>
<td>Intel 8088</td>
<td>29,000</td>
<td>1979</td>
<td>Intel</td>
<td>3 µm</td>
<td></td>
</tr>
<tr>
<td>Intel 80286</td>
<td>134,000</td>
<td>1982</td>
<td>Intel</td>
<td>1.5 µm</td>
<td></td>
</tr>
</tbody>
</table>
CPU transistor count (2)

<table>
<thead>
<tr>
<th>Microprocessor</th>
<th>Transistor Count</th>
<th>Year</th>
<th>Manufacturer</th>
<th>Technology Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel 80386</td>
<td>275,000</td>
<td>1985</td>
<td>Intel</td>
<td>1.5 µm</td>
</tr>
<tr>
<td>Intel 80486</td>
<td>1,180,000</td>
<td>1989</td>
<td>Intel</td>
<td>1 µm</td>
</tr>
<tr>
<td>Pentium</td>
<td>3,100,000</td>
<td>1993</td>
<td>Intel</td>
<td>0.8 µm</td>
</tr>
<tr>
<td>AMD K5</td>
<td>4,300,000</td>
<td>1996</td>
<td>AMD</td>
<td>0.5 µm</td>
</tr>
<tr>
<td>Pentium II</td>
<td>7,500,000</td>
<td>1997</td>
<td>Intel</td>
<td>0.35 µm</td>
</tr>
</tbody>
</table>
CPU transistor count (3)

<table>
<thead>
<tr>
<th>Model</th>
<th>Transistor Count</th>
<th>Year</th>
<th>Manufacturer</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD K6</td>
<td>8,800,000</td>
<td>1997</td>
<td>AMD</td>
<td>0.35 µm</td>
</tr>
<tr>
<td>Pentium III</td>
<td>9,500,000</td>
<td>1999</td>
<td>Intel</td>
<td>0.25 µm</td>
</tr>
<tr>
<td>AMD K6-III</td>
<td>21,300,000</td>
<td>1999</td>
<td>AMD</td>
<td>0.25 µm</td>
</tr>
<tr>
<td>AMD K7</td>
<td>22,000,000</td>
<td>1999</td>
<td>AMD</td>
<td>0.25 µm</td>
</tr>
<tr>
<td>Pentium 4</td>
<td>42,000,000</td>
<td>2000</td>
<td>Intel</td>
<td>180 nm</td>
</tr>
<tr>
<td>Atom</td>
<td>47,000,000</td>
<td>2008</td>
<td>Intel</td>
<td>45 nm</td>
</tr>
<tr>
<td>Barton</td>
<td>54,300,000</td>
<td>2003</td>
<td>AMD</td>
<td>130 nm</td>
</tr>
<tr>
<td>AMD K8</td>
<td>105,900,000</td>
<td>2003</td>
<td>AMD</td>
<td>130 nm</td>
</tr>
<tr>
<td>Itanium 2</td>
<td>220,000,000</td>
<td>2003</td>
<td>Intel</td>
<td>130 nm</td>
</tr>
<tr>
<td>Cell</td>
<td>241,000,000</td>
<td>2006</td>
<td>Sony/IBM/Toshiba</td>
<td>90 nm</td>
</tr>
</tbody>
</table>
CPU transistor count (4)

<table>
<thead>
<tr>
<th>Model</th>
<th>Transistor Count</th>
<th>Year</th>
<th>Company</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core 2 Duo</td>
<td>291,000,000</td>
<td>2006</td>
<td>Intel</td>
<td>65 nm</td>
</tr>
<tr>
<td>AMD K10</td>
<td>463,000,000</td>
<td>2007</td>
<td>AMD</td>
<td>65 nm</td>
</tr>
<tr>
<td>AMD K10</td>
<td>758,000,000</td>
<td>2008</td>
<td>AMD</td>
<td>45 nm</td>
</tr>
<tr>
<td>Itanium 2, with 9MB cache</td>
<td>592,000,000</td>
<td>2004</td>
<td>Intel</td>
<td>130 nm</td>
</tr>
<tr>
<td>Core i7 (Quad)</td>
<td>731,000,000</td>
<td>2008</td>
<td>Intel</td>
<td>45 nm</td>
</tr>
<tr>
<td>POWER6</td>
<td>789,000,000</td>
<td>2007</td>
<td>IBM</td>
<td>65 nm</td>
</tr>
<tr>
<td>Six-Core Opteron 2400</td>
<td>904,000,000</td>
<td>2009</td>
<td>AMD</td>
<td>45 nm</td>
</tr>
</tbody>
</table>
CPU transistor count (5)

<table>
<thead>
<tr>
<th>Model</th>
<th>Transistor Count</th>
<th>Year</th>
<th>Manufacturer</th>
<th>Process Technology</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six-Core Six-Core Core i7</td>
<td>1,170,000,000</td>
<td>2010</td>
<td>Intel</td>
<td>32 nm</td>
<td></td>
</tr>
<tr>
<td>Dual-Core Dual-Core Itanium 2</td>
<td>1,700,000,000³</td>
<td>2006</td>
<td>Intel</td>
<td>90 nm</td>
<td>596 mm²</td>
</tr>
<tr>
<td>Six-Core Six-Core Xeon 7400</td>
<td>1,900,000,000</td>
<td>2008</td>
<td>Intel</td>
<td>45 nm</td>
<td></td>
</tr>
<tr>
<td>Quad-Core Quad-Core Itanium Tukwila</td>
<td>2,000,000,000⁴</td>
<td>2010</td>
<td>Intel</td>
<td>65 nm</td>
<td></td>
</tr>
<tr>
<td>8-Core 8-Core Xeon Nehalem-EX</td>
<td>2,300,000,000⁵</td>
<td>2010</td>
<td>Intel</td>
<td>45 nm</td>
<td></td>
</tr>
</tbody>
</table>
GPU transistor count

<table>
<thead>
<tr>
<th>Processor</th>
<th>Transistor count</th>
<th>Date of introduction</th>
<th>Manufacturer</th>
<th>Process</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80</td>
<td>681,000,000</td>
<td>2006</td>
<td>NVIDIA</td>
<td>90 nm</td>
<td>480 mm²</td>
</tr>
<tr>
<td>RV770</td>
<td>956,000,000</td>
<td>2008</td>
<td>AMD</td>
<td>55 nm</td>
<td>260 mm²</td>
</tr>
<tr>
<td>RV850</td>
<td>1,040,000,000</td>
<td>2009</td>
<td>AMD</td>
<td>40 nm</td>
<td>170 mm²</td>
</tr>
<tr>
<td>GT200</td>
<td>1,400,000,000</td>
<td>2008</td>
<td>NVIDIA</td>
<td>55 nm</td>
<td>576 mm²</td>
</tr>
<tr>
<td>RV870</td>
<td>2,154,000,000</td>
<td>2009</td>
<td>AMD</td>
<td>40 nm</td>
<td>334 mm²</td>
</tr>
<tr>
<td>GF100</td>
<td>3,000,000,000</td>
<td>2010</td>
<td>NVIDIA</td>
<td>40 nm</td>
<td>529 mm²</td>
</tr>
</tbody>
</table>
Gordon Moore

- The co-founder of Intel
- Famous
 - Because of Moore’s law
Moore’s Law (1)

- 1965
- Number of transistors
 - In commercial CPUs
 - Will be almost DOUBLED
 - Every two years
- In other words
 - Number of transistors per chip:
 - $2^{\text{year} - 1959}$
Moore’s Law (2)

• Number of designers for each CPU
 • Grows as 1/x
 • 4004 had 3 designers
 • Intel dual core has 300 designers

• Fab cost
 • Grows as 1/x
 • 90nm fab costs 2 Billion dollars
Moore’s Law in Practice

CPU Transistor Counts 1971-2008 & Moore’s Law

Curve shows ‘Moore’s Law’: transistor count doubling every two years
Improving Performance

• How to improve performance
 • Increase transistor count
 • Cache area
 • Parallel units
 • Increase frequency
NOT Gate Power Consumption

\[V_{cc} \]

\[V_{out} \]

\[V_{in} \]

\[V_{cc} \]

\[I_{max} \]

\[I_D \]
CPU Power Consumption

Power Density

- Rocket Nozzle
- Nuclear Reactor
- Hot Plate
- IBM 4004
- IBM 8080
- IBM 8085
- IBM 386
- IBM 486
- IBM P6
- Pentium®
- Sun’s Surface

...chips might become hot...
Generated Heat

- Generated Heat is a function of:
 - F: Running frequency
 - V^2: Supply voltage to the power of 2
- We have to decrease these variables
Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)
MULTI CORE COMPUTING

Chapter 3